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Abstract: The purpose of this study was to identify promising candidates for the role of biomarkers associated with different degrees of the 
apnea-hypapnea index in patients using polysomnographic recordings. 
Material — The study used polysomnography data recorded in 30 patients with nocturnal respiratory dysfunction in the form of 
obstructive sleep apnea syndrome. 
Methods — Analysis of polysomnographic recordings was carried out using a joint recurrent indicator, for which further statistical 
characteristics were assessed: average value, geometric mean, cubic mean, median, dispersion, standard deviation, the coefficient of 
variation, asymmetry indicator, kurtosis indicator. 
Results — For all polysomnographic recordings, joint recurrence diagrams were calculated to identify time points corresponding to specific 
sleep events in patients with high and low apnea-hypnea index. Based on the statistical characteristics of such events, possible candidates 
for the role of biomarkers to diagnose apnea syndrome are introduced. 
Conclusion — The article presents clustering parameters and the efficiency of dividing into clusters of statistical characteristics for two 
groups of patients - with high and low apnea-hypnea index. Characteristics have been identified that are promising candidates for the role 
of biomarkers associated with the apnea-hypnea index value. 
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Introduction  

The search for functional biomarkers for automated detection 
of early stages of various diseases is one of the complex tasks of 
interdisciplinary data analysis. However, there are a large number 
of problems in this area. First of all, we must take into account that 
physiological signals naturally combine entire classes of signals 
from different systems of the human body. There are many 
methods aimed at attempting to separate such signals into 
relatively pure components [1]. However, these methods are often 
complex and do not always work correctly. In turn, the complexity 
of the mentioned methods can lead to false interpretation of the 
results, as well as to deliberately erroneous recognition of 
biomarkers of pathological processes by medical personnel [2]. 

In addition, methods originally developed for the analysis of 
stationary processes are often used to process physiological 
signals. The dynamics of living systems differs from model 
stochastic and chaotic systems in their greater complexity, 
accompanied by changes in both system control parameters and, 
apparently, continuous evolution and bifurcations of the internal 
structure of living systems as such. Finally, when processing signals 
from living systems, it is necessary to remember the individuality 
of the subjects. In particular, even the characteristics of invasive 

recording of brain activity in genetically homogeneous strains of 
laboratory rats have significant differences, falling into many 
subtypes [3]. Thus, automatic work with the functional activity of 
the brain of random patients, whose medical history, besides the 
diagnosis, may be burdened with a significant amount of comorbid 
pathology, is significantly complicated by the presence of 
“invisible” system parameters. 

At the moment, most systems for automatic detection of 
biomarkers process, in fact, images of rather slow processes, such 
as, for example, well-known and used in medicine algorithms for 
detecting precursors of the development of benign and malignant 
neoplasms, skin lesions [4], medical decision support systems for 
radiography and magnetic -resonance tomography [5], etc. At the 
same time, the issues of monitoring the main characteristics of the 
functioning of the human cardiovascular system using the 
parameters of the basic rhythm of peak R waves on cardiograms 
have been relatively successfully resolved. The latter are well 
recorded by signal shape evaluation methods [6]. For example, 
automatic diagnosis of arrhythmias is now confidently carried out 
[7], the risk of developing episodes of atrial and ventricular 
fibrillation is identified [8], etc. In this regard, the interest of 
researchers in the search for simple informative biomarkers that 
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are resistant to noise and do not require complex medical and 
computer equipment does not decrease [1, 9]. 

In this work, one of the simplest and at the same time effective 
methods of nonlinear dynamics was used - the construction of 
recurrence diagrams and their further numerical analysis. The first 
attempts to use recurrent methods of quantitative analysis to 
solve applied problems appeared in the 1980s in Ekman's 
publications [10]. Since then, methods based on recurrent analysis 
have been actively developed in various areas of biomedical signal 
analysis [11]. Recurrent analysis has a number of advantages over 
other methods - simplicity of calculations and the ability to work 
with a small set of signal points [12]. Moreover, other methods 
often require the assumption of initial stationarity of the 
experimental series under consideration [13, 14]. It is obvious that 
real signals of physiological systems, including EEG signals, do not 
at all satisfy the requirement of stationarity, exhibiting a complex 
set of features of dynamic systems with linear and nonlinear 
properties [15-17]. 

Because this study used polysomnography recordings, a key 
feature of which is the large experimental batch size, typically 
involving more than 7 hours of continuous recording at a sampling 
rate of about 500–1000 Hz, the signals were divided into small 
time windows, for which joint recurrent indicators and their 
statistical characteristics were calculated to highlight certain signal 
features that can be further used as biomarkers.  

 

Material and Methods 

Recurrence Analysis 

Recurrent analysis allows you to establish relationships and 
correlations between signals in complex distributed systems. This 
method has found application in a wide range of tasks for 
processing complex signals of various natures [18, 19]. The 
calculation algorithm itself is extremely simple. Let us consider a 
signal x(t), the values of which are known only at discrete times ti, 
where i=1, …, n. Let this signal x(ti) be equidistant, i. e. ti+1-ti=ti+1-
ti=∆t for any numbers i and j. Then consider constructing a 
recurrent plane as follows: 

 

 Rij = θ(ε − ||x(ti) − x(tj)||),   (1) 

 

where Ri,j – element of the recurrent matrix for the signal x, ti 
and tj – time moments t, ε – an empirically determined threshold 
value that ensures the necessary accuracy of the method, θ — the 
Heaviside function, which is defined as: 

 

    (2) 

 

Thus, the recurrent matrix, constructed according to 
expressions (1) and (2), is formed from elements of two types – 
«0» and «1». The matrix element is equal to «1» if the value of the 
signal x(ti) at time ti falls into the ε-neighborhood of the signal 
value x(tj) at time tj. At the same time, the matrix element is equal 
to «0» if the values of the signal x at times ti и tj are far from each 
other. These recurrent matrices (1) are often shown graphically in 
the form of recurrence diagrams, in which colored dots 
correspond to one values and white dots correspond to zero 
values of the matrix. Thus, the recurrent properties of the time 

series x(ti) are represented in the form of geometric structures and 
allow us to visualize the dynamics of the series in the form of a 
simple graphical convolution. 

Recurrence analysis includes methods for studying the location 
of points on the constructed surface of a recurrence diagram [20], 
which have been used in recent years to process stochastic time 
series of various natures [10, 21]. Further, with the development 
of machine learning methods, convolutional neural networks 
began to be used to directly recognize geometric structures 
appearing on recurrence diagrams [22, 23]. 

Note that in the case of single-frequency periodic dynamics in 
the recurrence diagram one can observe the resemblance of a 
grating, the period of which will correspond to the period of 
oscillation of the system [24]. In the case of multi-frequency 
periodic dynamics, superposition of gratings with different periods 
is observed. The greater the number of repetitions of a particular 
value, the more corresponding elements of the recurrent matrix 
are equal to «1». From this it is easy to conclude that the higher 
the oscillation frequency, the more points we get on the 
recurrence diagram. This fact makes it easy to identify the most 
frequently occurring values in the signal [11]. Therefore, recurrent 
analysis, although it does not belong to the group of frequency 
methods, allows you to automatically take into account the 
frequency of signal oscillations. To estimate the number of 
repetitions in the signal as a whole, the following recurrent 
indicator is used: 

 

 ,   (3) 
 

Such an indicator can be calculated for each analyzed signal x 
over the entire recorded length or over the required time 
fragment.  

To compare two signals, a similar calculation of joint 
recurrence diagrams and joint recurrence indicators can be used. 
Formula (1) changes quite slightly: 

 

JRij = θ(ε − ||x(ti) − x(tj)||)·θ(ε − ||y(ti) − y(tj)||), (4) 

 

where JRi,j – element of the joint recurrent matrix for signals x 
and у, ti and tj - times t, ε and θ — have the same meaning as in 
the formula (1). Formula (4), thus, gives the values 1 for the 
elements of the joint recurrent matrix only if at moments ti and tj 
both signals x and у are in their ε-neighborhoods. Then, by analogy 
with formula (3), we can calculate the joint recurrent indicator: 

 

 ,   (5) 
 

This indicator is very useful, as it shows how often these 
signals demonstrate similar dynamics - returns of signal variables 
at the same points in time.  
 

 

 



 

ISSN 2304-3415, Russian Open Medical Journal 3 of 7 

2023. Volume 12. Issue 4 (December). Article CID e0401 
DOI: 10.15275/rusomj.2023.0401 

Somnology 

 

© 2023, LLC Science and Innovations, Saratov, Russia www.romj.org 
 

Statistical Metrics 

In the course of this work, a large number of standard 
statistical metrics were calculated for the calculated joint 
recurrent indicators. This section provides the corresponding 
calculation formulas for all of them. 

Average value 

The formula for calculating the average is simple: 

 

 ,    (6) 
 

Harmonic mean 

The harmonic mean is one of the ways in which one can 
understand the “average” value of some set of numbers. 

 

 ,   (7) 
 

Geometric mean 

The geometric mean of several positive real numbers is a 
number that can be used to replace each of these numbers so that 
their product does not change. 

 

 ,   (8) 
 

Cubic mean 

The cubic average is a characteristic of volumetric features. 
This is a special case of the power mean and therefore obeys the 
inequality about means. In particular, for any numbers it is not less 
than the arithmetic mean. 

 

 ,   (9) 
 

Median 

The median or middle value of a set of numbers is the number 
that is in the middle of this set, if ordered in ascending order, that 
is, a number such that half of the elements of the set are not less 
than it, and the other half are not greater. Another equivalent 
definition: the median of a set of numbers is the number whose 
sum of distances (or, more strictly, moduli) from all numbers from 
the set is minimal. 

Dispersion 

Dispersion of a random variable is a measure of the dispersion 
of the values of a random variable relative to its mathematical 
expectation. The formula for calculating a biased estimate of the 
variance of a random variable from a sequence of realizations of 
this random variable has the form: 

 

 ,   (10) 
 

 

Standard deviation 

The standard deviation is the most common indicator of the 
dispersion of the values of a random variable relative to its 
mathematical expectation (an analogue of the arithmetic mean 
with an infinite number of outcomes). Usually means the square 
root of the variance of a random variable, but sometimes it can 
mean one or another version of estimating this value. 

 

 ,    (11) 
 

The coefficient of variation 

In probability theory and statistics, the coefficient of variation, 
also known as relative standard deviation, is a standard measure 
of the dispersion of a probability or frequency distribution. 

 

 ,    (12) 
 

Asymmetry indicator 

The asymmetry indicator is a value in probability theory that 
characterizes the asymmetry of the distribution of a given random 
variable. 

 

 ,  (13) 
 

Kurtosis indicator 

The kurtosis indicator in probability theory is a measure of the 
sharpness of the peak of the distribution of a random variable. 

 

 ,  (14) 
 

Polysomnography data obtained 

The subjects were individuals with nocturnal respiratory 
dysfunction in the form of obstructive sleep apnea syndrome 
(N=30, age 48,0±19,1, median 43 years, male to female ratio = 
18/12). Sleep duration was 6-9 hours, с 21.30-23.30 until the 
patient’s usual time of awakening. 

Polysomnographic recording included electrocardiogram 
(ECG), respiratory function, oculography (OCG), electromyogram 
(EMG) and two electroencephalogram (EEG) signals recorded 
during night sleep. The ECG signal was recorded in standard lead I 
according to Einthoven. Respiration signals were recorded using a 
flow-through oronasal temperature sensor and a snoring sensor. 
EMG signals were recorded on the patient's chin, right forearm 
and left shin. OСG signals included recordings of horizontal and 
vertical eye movements. 

EEG signals were recorded in 2 standard leads according to the 
10-20 scheme. EEG signals were bandpass filtered 0.1-40 Hz and 
sampled at 500 Hz, ∆t=0,002 seconds. Registration of each EEG 
channel can be considered as a separate one-dimensional signal 
x(ti) for subsequent recurrent analysis. 
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Figure 1. Examples of successful and failed clustering.  

а – an example of successful separation by harmonic mean and median for negative sleep anomalies. б – an example of erroneous division based on kurtosis 
and median for positive sleep anomalies. Red and green dots show the obtained statistical characteristics in two-dimensional space, and the black line shows 
the linear classifier.  

 

Based on these signals, joint recurrent indicators were 
constructed between EEG channels. The initial marking of the 
dependences of the joint recurrent indicator on time was carried 
out to identify special sleep events. If the joint recurrent indicator 
for a time of more than 150 seconds exceeded its average value by 
an amount greater than the variance (JRIi>J̅R̅I̅+σJRR), then this 
event was marked, that is, the start and end times of the event 
were recorded. It was noted as a positive sleep abnormality. 
Events were similarly marked when the indicator for a time of 
more than 150 seconds was lower by an amount greater than the 
dispersion of its average value (JRIi>J̅R̅I̅-σJRR). Such sleep events 
were noted as negative anomalies. 

It is worth noting that the signal may contain individual 
extremes that go beyond the established boundaries, but they 
were not marked as events, since their length does not exceed 150 
seconds. Subsequently, statistical characteristics were calculated 
separately for positive and negative anomalies in order to divide 
patient groups into clusters and identify possible biomarkers from 
these clusters. 

 

Results 

The work calculated a large number of statistical 
characteristics of joint recurrent indices (JRIs) corresponding to 
special sleep events. Characteristics for positive and negative sleep 
anomalies were considered separately. In this case, the patients 
were initially divided into two groups. The first group included 
patients with an apnea-hypopnea index less than 25. In the second 
group, the apnea-hypopnea index exceeds 25. Special sleep events 
for these groups were calculated separately to compare their 
statistical patterns and identify, if possible, simple linear classifiers 
for clustering according to these patterns.  

Clustering was carried out based on the support vector 
machine and the k-means algorithm for each pair of statistical 
characteristics, constructed using joint recurrent indicators. The 
essence of the complete method: the centers of mass of the 
distribution for both groups are located in the two-dimensional 
space of statistical characteristics. Points located at a distance of 
more than three dispersion values from the center of mass are 
removed from further consideration to avoid the influence of 

statistical outliers on the results. Then a straight line is constructed 
through the centers of mass and the central point between the 
centers of mass lying on this straight line is calculated. A 
perpendicular is built through this point, which will separate the 
resulting clusters. It is this line that will be considered a linear 
classifier.  

To assess the accuracy of this method, it is proposed to 
calculate a certain specially introduced coefficient µ. Its calculation 
involves measuring the distance to the linear classifier for each 
point of each group. The normal is lowered onto the classifier from 
the point and using the Euclidean measure, the distance from the 
point to the line is calculated. Since different characteristics have 
different distribution widths, the resulting distance is normalized 
to the distance from the center of mass to the origin of 
coordinates. The coefficient is the sum of all distances, however, if 
the point is on the side opposite the center of mass relative to the 
linear classifier, then the distance is taken with a minus sign. Thus, 
the greater the value of the coefficient µ, the better the resulting 
linear classifier divides groups into clusters. Figure 1 shows 
examples of successful and failed clustering. 

For the example shown in Figure 1,а the coefficient µ takes the 
value 186.9, while for the example in Figure 1,б µ=14,29. In this 
case, the coefficient µ can also take negative values if the division 
into clusters was very unsuccessful.  

Tables 1 and 2 show all coefficient values for negative and 
positive sleep anomalies. From these tables, we can identify those 
pairs of statistical characteristics for each type of sleep event that 
best separate these events and are the most likely candidates for 
the role of biomarkers.  

Tables 1 and 2 show that the coefficient values are 
symmetrical relative to the main diagonal, which is left empty for 
obvious reasons. The filling symmetry is logical, since in this case 
the clusters will be identical up to the change of variables. It is 
worth noting, however, that in the work only values below the 
main diagonal were calculated, and values above the main 
diagonal were filled in mirror image. This remark is important, 
since Tables 3 and 4 show the coefficients for the linear classifier 
obtained for pairs of statistical characteristics located below the 
main diagonal. 
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Table 1. Values of the coefficient µ for all pairs of statistical characteristics for negative sleep anomalies 

- x̅ G H D σ cv As Ex Me V 

x̅ - 178,8 174,6 144,8 128,9 31,37 -15,62 -0,395 174,1 -2,01 
G 178,8 - 170,9 135,9 123,8 33,51 -12,45 1,905 171,1 -2,69 
H 174,6 170,9 - 145,6 125,2 32,95 -17,7 -0,305 186,9 -1,86 
D 144,8 135,9 145,6 - 161,1 35,99 -13,03 -6,381 240 -2,76 
σ 128,9 123,8 125,2 161,1 - 34,64 -7,002 -1,921 172,3 -4,95 
cv 31,37 33,51 32,95 35,99 34,64 - 64,09 33,87 13,02 1,86 
As -15,62 -12,45 -17,7 -13,03 -7,002 64,09 - 13,66 52,54 2,75 
Ex -0,395 1,905 -0,305 -6,381 -1,921 33,87 13,66 - 5,314 2,48 
Me 174,1 171,1 186,9 240 172,3 13,02 52,54 5,314 - -2,19 
V -2,01 -2,69 -1,86 -2,76 -4,95 1,86 2,75 2,48 -2,19 - 

 

Table 2. Values of the coefficient µ for all pairs of statistical characteristics for positive sleep anomalies 

- x̅ G H D σ cv As Ex Me V 

x̅ - 157,6 163 69,54 69,99 51,97 115,7 13,08 164,6 40,71 

G 157,6 - 161,3 74,11 74,85 48,96 118,2 13,12 167,8 39,04 
H 163 161,3 - 71,07 71,29 51,05 116,1 13,09 165,7 36,47 
D 69,54 74,11 71,07 - 30,77 48,23 470,6 12,71 153,5 25,68 
σ 69,99 74,85 71,29 30,77 - 30,16 304,3 16,62 127 84,2 
cv 51,97 48,96 51,05 48,23 30,16 - -7,688 21,35 52,88 60,87 
As 115,7 118,2 116,1 470,6 304,3 -7,688 - 16,47 104,6 26,1 
Ex 13,08 13,12 13,09 12,71 16,62 21,35 16,47 - 14,29 22,15 
Me 164,6 167,8 165,7 153,5 127 52,88 104,6 14,29 - 13,02 
V 40,71 39,04 36,47 25,68 84,2 60,87 26,1 22,15 13,02 - 

 

Table 3. Values of the linear classifier’s coefficients а and b (in the form y=ax+b) for all pairs of statistical characteristics for negative sleep anomalies 
b\a x̅ G H D σ cv As Ex Me V 

x̅ - -1,14 -0,88 -0,29 -0,002 -3,897 -10,3 9,677 -0,88 0,33 

G 0,015 - -0,77 -0,255 -0,002 -3,408 -9,04 8,463 -0,770 0,33 
H 0,0117 0,0119 - -0,331 -0,002 -4,419 -11,72 10,97 -0,999 0,29 
D 0,0035 0,0036 0,0036 - -0,008 -13,35 -35,4 33,15 -3,018 0,20 
σ 2,7×105 2,7×105 2,7×105 2,4×105 - -1487 -394 3692 -336,1 0,89 
cv 0,3031 0,3038 0,3036 0,2994 0,2912 - -2,65 2,483 -0,2261 0,986 
As 0,213 0,2151 0,2145 0,2032 0,1815 0,8806 - 0,9361 -0,085 0,947 
Ex -1,268 -1,27 -1,27 -1,259 -1,239 -1,893 -1,34 - 0,09104 0,991 
Me 0,0116 0,0118 0,0118 0,0108 0,009 0,068 0,01 0,115 - 0,91 
V -0,01 -0,69 -0,86 -0,76 -0,95 0,86 0,75 0,48 -0,19 - 

 

Table 4. Values of the linear classifier’s coefficients а and b (in the form y=ax+b) for all pairs of statistical characteristics for positive sleep anomalies 
b\a x̅ G H D σ cv As Ex Me V 

x̅ - -0,9721 -0,9937 -0,06 -0,002 0,972 1,897 0,83 -0,92 -0,182 

G 0,1446 - -1,022 -0,062 -0,002 1,001 1,952 0,86 -0,95 -0,220 
H 0,151 0,1465 - -0,061 -0,00 0,9791 1,909 0,84 -0,93 -0,205 
D 0,01487 0,0146 0,01479 - -0,03 16,05 31,29 13,8 -15,2 0,0006 
σ 0,0004 0,000 0,0004 0,0006 - 409,5 798,7 352 -389 0,1207 
cv 0,05069 0,05508 0,05193 -0,038 0,024 - -1,95 -0,86 0,95 -0,181 
As -0,0545 -0,0459 -0,0521 -0,229 -0,1 0,335 - -0,44 0,48 -1,808 
Ex -1,536 -1,533 -1,535 -1,613 -1,56 -1,364 -1,432 - 1,1 0,079 
Me 0,1356 0,1315 0,1345 0,220 0,16 -0,054 0,02042 1,69 - 22,02 
V 0,01745 0,01789 0,0180 -0,02 1,551 31,16 38,51 -4,81 71,1 - 

 

For simplicity, to reduce the number of tables due to the 
symmetry of the data in Tables 3 and 4, the coefficients а of the 
linear classifier are located above the main diagonal, and the 
coefficients b below it. Thus, using Table 1, you can determine the 
most suitable statistical characteristics for dividing patients into 
groups of patients for negative sleep anomalies, while using Table 
3 you can restore the type of linear classifier that was used to 
separate the data. 

From the analysis of Table 1 it is clear that the most suitable 
characteristics for a biomarker are the average values (arithmetic, 
harmonic), as well as the median and, to a lesser extent, variance. 

Between them, as a rule, the coefficient µ takes values exceeding 
100, which is a good result. In Table 2 it can be observed that for 
positive sleep anomalies, instead of dispersion, the asymmetry 
indicator allows clustering with average values. However, the 
coefficient µ achieves its greatest value precisely when 
constructing clusters based on dispersion and asymmetry index.  

 

Discussion 

The results list statistical characteristics that can be used as 
biomarkers to distinguish between patients with and without sleep 
apnea. However, these results are not enough to form full-fledged 
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biomarkers. Firstly, the results can be improved by using nonlinear 
functions instead of a linear classifier. Some pairs that did not give 
a good separation into clusters according to the results of Tables 1 
and 3 may give a good result when using non-linear classifiers, 
which will shift the priority for creating stable biomarkers. 

Secondly, before forming a final opinion on the effectiveness 
of the division, it is necessary to consider the division into clusters 
according to the given classifiers in the multidimensional space of 
statistical characteristics. Thus, for negative anomalies it makes 
sense to construct a five-dimensional space from the arithmetic 
mean, harmonic mean, geometric mean, median and variance. If 
the division into clusters remains in five-dimensional space, then 
using these characteristics it will be possible to build a system for 
recognizing apnea syndrome. 

It also makes sense to cluster according to three or four 
statistical characteristics, building a multidimensional space. As 
with a nonlinear classifier, in this case the result may change. Thus, 
this article is the first important step in identifying biomarkers for 
the early diagnosis of apnea, however, a lot of additional research 
is still required to create an effective system for recognizing apnea 
syndrome in the early stages.  

 

Conclusion 

In this article, joint recurrent indices were calculated for 
polysomnographic recordings of patients with apnea and statistical 
metrics of special sleep events. Metrics were calculated separately 
for positive sleep anomalies (when the joint recurrent indicator for 
a long time exceeds the average value of the indicator by an 
amount greater than its variance), and separately for negative 
anomalies (when the recurrent indicator is more than a variance 
less than its average value). Each calculation included mean, 
geometric mean, harmonic mean, dispersion, standard deviation, 
coefficient of variation, skewness index, kurtosis index. Each pair 
of statistical metrics was used to find a linear classifier by which 
patients with different apnea-hypnea index can be distinguished. 
To assess the quality of separation using this linear classifier, the 
coefficient µ was calculated based on the distance from the points 
of each cluster to the linear classifier. In addition to the calculated 
coefficients µ, the used parameters a and b for the linear classifier 
are given (with the classifier equation y=ax+b). A comparative 
analysis of the coefficient µ showed that the classifier associated 
with the median values works best. The asymmetry index and 
harmonic mean are also often effective for dividing patients into 
groups. These metrics are the most promising for searching for 
biomarkers of early diagnosis of apnea using polysomnography 
data. 
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