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Abstract: Atmospheric pollution causes enormous damage to public health worldwide resulting in millions of deaths annually, and reducing 
both life expectancy and quality of life. Suspended particulate matter (SPM) in the air triggers immune system responses, which in turn 
determines a wide range of diseases based on chronic inflammation. However, many issues regarding the relationship between air 
pollution and the development and course of pathologies remain unresolved. The present review summarizes the data of domestic and 
foreign publications regarding the effect of atmospheric SPM on the immune system. The article reveals the effect of SPM on 
immunocompetent cells and investigates cellular and molecular response mechanisms of the body. The data presented in the review imply 
the need for further studies of immune system response mechanisms under the impact of atmospheric SPM. 
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Introduction  

According to the World Health Organization (WHO), air 
pollution causes enormous damage to public health worldwide 
resulting in millions of deaths annually, and reduces life 
expectancy and quality of life [1]. Suspended particulate matter 
(SPM) is a heterogeneous mixture of solid particles of different 
sizes, qualitative traits and quantitative characteristics. The 
chemical composition of SPM can be represented by nitrates, 
sulfates, carbon, organic and biological compounds, along with 
various metals (iron, copper, nickel, zinc, etc.) [2, 3]. The main area 
of exposure to SPM when inhaling ambient air is the respiratory 
tract from the nasal passages to the lungs, where direct 
interaction between particles and cells of the respiratory tract 
occurs. Microtoxicants in the ambient air activate immune system 
responses, which, in turn, determines a wide range of diseases 
with underlying chronic inflammation [4-8]. SPM triggers signaling 
pathways leading to the activation of a complex response of the 
immune system, including the participation of various types of 
cells [9-12]. This field of study is of great interest to researchers. 
Numerous publications are presented in foreign and, to a lesser 
extent, Russian scientific journals. They are usually devoted to 
identifying the response of immunocompetent cells and cytokines 
to SPM. Our review summarizes ideas about response mechanisms 
at several hierarchical levels: from cellular to molecular. The 
interaction of the immune system with thiol-disulfide homeostasis 
in the formation of a response to air microtoxicants are shown. 
Abnormalities in subpopulations of immune cells that signal dust 
particles are described in detail. The features of the immune 
system’s response to different qualitative compositions of SPM are 
presented.  

Impact of SPM on immunocompetent cells 

Airway epithelial cells (ECs) are the most important target for 
inhaled SPM because they are the first barrier to xenobiotics, 
capable of releasing various mediators [13]. In response to the 
detection of microtoxicants, human bronchial epithelial cells 
produce a variety of cytokines, chemokines, and other signaling 
molecules, including interleukins (IL-1α, IL-1β, IL-6, IL-8) and 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
which contribute to the activation of airway inflammation (Figure 
1) [9, 14]. IL-6 content are of particular importance when exposed 
to SPM. Increased SPM contamination has been shown to result in 
a concomitant increase in IL-6 levels in airway epithelial cells, 
macrophages and bronchoalveolar lavage fluid, as well as in the 
systemic circulation [9, 15, 16]. Granulocyte-macrophage colony-
stimulating factor (GM-CSF) promotes the maturation of myeloid 
dendritic cells (DCs) and the differentiation of monocytes into DCs, 
and is required for the survival of granulocytes [9, 17]. The 
functions of these cells are cross-linked: ECs can control DC 
function by secreting cytokines that stimulate a Th2 response [18]. 

Dendritic cells of the human respiratory tract form complex 
adaptive immune responses when interacting with SPM. DCs form 
the link between innate and adaptive immunity by recognizing 
antigens through the expression of innate receptors, such as toll-
like receptors (TLRs). Next, DCs process fragments of these 
antigens for T lymphocytes, which causes an effector immune 
response. Dendritic cells also express a number of co-stimulatory 
molecules and secrete soluble mediators. The nature of the 
lymphocyte response (Th1 or Th2) largely depends on the quantity 
of peptides, co-stimulatory molecules and cytokines that DCs 
present to T lymphocytes [9, 19, 20]. 
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Figure 1. Effects of SPM on immunocompetent cells. 

 

The SPM influences antigen-presenting cells and increases 
antigen immunogenicity. Numerous studies have shown that 
stimulation of SPM accelerates maturation of DCs, as well as 
increases CD80+ expression and proinflammatory cytokine release 
[9, 21, 22]. Active maturation of DCs triggers the T lymphocyte 
response and enhances cytokine production by T-cells [21, 23]. 
Under the impact of SPM, DCs trigger CD4+ and CD8+ cell 
responses characterized by increased production of IFN-γ and IL-
17A [9, 22]. Furthermore, amount of natural killer cells in 
peripheral blood decreases [11, 25]. B lymphocytes also represent 
an important link in forming the immune response to SPM 
exposure. There are data showing the relationship between the 
action of SPM and a decrease in the production of immunoglobulin 
(Ig)A and an increase in the levels of IgM, IgG and IgE [9, 26-28]. 

Alveolar macrophages (AMs) are the major immune cell 
population of the airways. One of their main functions is the 
phagocytosis of SPM and certain types of microorganisms in the 
lungs, which is the initial stage of their removal. AMs are also 
capable of phagocytosing carbon-containing particles [9, 29, 30]. 
When exposed to SPM, AMs experience a decrease in motility and 
mucociliary clearance, which leads to the development of ROS-
mediated oxidative stress, especially during chronic inhalation of 
microparticles [9, 31]. Exposure to SPM may induce a Th2-type 
immune response and reduce the phagocytic ability of AMs, which 
may be associated with TLR2 and TLR4 [11]. SPM can stimulate the 
production of proinflammatory cytokines by macrophages [9, 14, 
31]. Cytokines, especially TNF-α and IL-1β produced by 
macrophages, can also stimulate epithelial cells and trigger an 
enhanced response to microtoxicants. 

Exposure to SPM leads to a significant increase in the numbers 
of neutrophils and eosinophils [32]. Eosinophils are effector cells 
that secrete cytokines involved in the activation of Th2-type T 
helper cells. Currently, the effect of SPM on eosinophilic 
inflammation is poorly studied [9]. However, there is evidence that 
in patients with respiratory diseases, oxidative stress induced by 
SPM can cause eosinophilic airway inflammation, enhance atopic 
allergic sensitization and increase susceptibility to infections [33, 
34]. Neutrophils are particularly important granulocytes when 
considering the effects of SPM on the body, as they are the most 
abundant leukocyte cells in the blood and are rapidly transported 
to sites of inflammation. Published studies confirmed that when 
exposed to microtoxicants, neutrophils infiltrate into the bronchial 
mucosa activating and increasing the production of IL-8 [35]. At 
the same time, neutrophils express the enzymes NADPH oxidase 
and myeloperoxidase, which produce superoxide anions and 
hypochlorite anions [36]. 

 

The role of oxidative stress induced by SPM in the formation 
of the immune response 

SPM can penetrate not only into the respiratory tract and 
lungs, but also into the circulatory system. The main mechanism of 
this action is the induction of oxidative stress in cells. Mechanisms 
of oxidative stress may involve the formation of oxidants on the 
surface of SPM, the release of metals or organic components from 
particles and the initiation of an inflammatory response. Activation 
of epithelial cells and resident macrophages, recruitment and 
activation of neutrophils, eosinophils, monocytes and lymphocytes 
are also mechanisms of response to the effects of SPM [37]. SPMs 
are known to stimulate cells to produce proinflammatory 
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cytokines and chemokines. The ability of T-cells to produce a 
specific set of cytokines and differentiate T-cells is programmed by 
transcription factors. E.g., the main factors for Th1 and Th2 are T-
bet and Runx3, and GATA3, respectively. SPM causes airway 
inflammation by regulating the expression of transcription factors. 
Exposure to SPM has been shown to disrupt the balance between 
Th1/Th2 cells, with a decrease in the percentage of Th1 cells due 
to the suppression of Runx3 and an increase in the number of Th2 
cells due to the activation of GATA3 expression [33, 38, 39]. 
Therefore, exposure to SPM can trigger a cascade of immune 
dysfunction, which can lead to the development or progression of 
SPM-related pathologies [8, 9]. 

Oxidative stress products trigger the mitogen-activated protein 
kinase (MAPK) signaling cascade that leads to the activation of the 
redox-sensitive transcription factor (NF-κB), which regulates the 
expression of many proinflammatory genes, including cytokine 
genes and their receptors (Figure 2) [40]. Moreover, SPM is 
capable of generating reactive oxygen species (ROS), promoting 
oxidative stress and reducing the level of endogenous 
antioxidants. Organic compounds present in SPM can donate 
electrons to O2 molecules to form superoxide free radicals. SPM 
metals similarly donate electrons to form superoxide and 
hydrogen peroxide and can directly deplete endogenous thiol 
antioxidants [8, 9, 41, 42]. Oxidative stress stimulates the 
generation of intracellular signals that can induce inflammatory 

reactions, including the production of interleukins [9]. Exposure to 
microtoxicants leads to the synthesis of IL-1β, IL-6 and tumor 
necrosis factor (TNF-α) by T lymphocytes. Activation of this 
pathway also determines the production of C-reactive protein and 
serum amyloid A [7, 32, 43, 44]. In addition to activating 
proinflammatory pathways, ROS can cause damage to cellular 
proteins. The inflammatory response to airborne microtoxicants is 
also driven by mechanisms of alteration and damage to both 
microRNA and DNA, which may involve various genes and 
processes [45].  

The development of oxidative stress and ROS production leads 
to mitochondrial damage, which is characterized by three key 
processes: damage to mitochondrial DNA (mtDNA), protein 
oxidation and activation of lipid peroxidation processes. SPM can 
cause a decrease in mitochondrial membrane potential and 
activate mitochondria-mediated apoptosis [8, 46-49]. MtDNA and 
ROS are involved in the transcriptional regulation of immune cells. 
During the development of SPM-mediated mitochondrial 
dysfunction, molecular patterns associated with damage are 
released into the cytoplasm and detected by pattern recognition 
receptors, which triggers the formation of an immune response. 
Signaling mechanisms are generated in immune cells leading to 
the activation of NF-κB, MAPK and interferon regulatory factor, 
which control the expression of proinflammatory chemokines and 
cytokines [8, 50-52]. 

 

 

 

 
Figure 2. Mechanisms of immune response during exposure to SPM. 
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The maintenance of thiol-disulfide homeostasis ensured by the 
activity of the thioredoxin and glutathione systems, plays a 
significant role in the regulation of the redox balance in cells and in 
protecting the body from oxidative stress. Reversible post-
translational disulfide modifications of proteins and their 
subsequent reduction by thiol-disulfide-dependent antioxidant 
enzymes constitute the most significant mechanism of intracellular 
redox signaling. The thioredoxin system plays an important role in 
immune responses and regulation of inflammation. Under stress 
conditions, thioredoxin protects immune cells from oxidative 
stress and apoptosis. The thioredoxin system ensures the 
restoration of disulfide bonds in proteins damaged by oxidation. 
Another example of redox regulation is the activation of the 
transcription factor NF-κB by cytosolic thioredoxin, which 
regulates the immune response, apoptosis and the cell cycle [53-
57].  

The glutathione system maintains a reduced intracellular 
environment ensuring the formation of the correct tertiary 
structure of proteins and regulating key intracellular processes, 
including the activity of the thioredoxin system. As an antioxidant, 
glutathione directly neutralizes ROS generated by atmospheric 
SPM and inhibits lipid peroxidation. It is involved in the 
detoxification of hydrogen peroxide by various glutathione 
peroxidases, helping to protect cell membranes from oxidative 
stress. Glutathione activates a number of signaling pathways, 
including those associated with the transcription factor NF-κB and 
MAPKs [53-56].  

 

Immune response mechanisms during exposure to SPM 

Stimulation of cells by SPM involves a variety of mechanisms 
including TLRs, ROS, and polycyclic aromatic hydrocarbon (PAH) 
pathways, such as the aryl hydrocarbon receptor. These, in turn, 
activate proinflammatory intracellular signaling cascades, such as 
nuclear factor (NF-κB) and MAPK pathways [9, 58]. 

Production of ROS by SPM and formation of oxidative stress 
induce transmission of NF-κB and MAPK signals. Although both 
signaling pathways are activated upon exposure to SPM, the NF-κB 
pathway has been found to play a crucial role [57, 59-62]. Active 
oxygen species can directly affect cellular calcium channels, 
thereby disrupting the transmission of intracellular ionic signals. 
Intracellular Ca2+ is an important signaling system that can affect 
the NF-κB pathway [9, 63]. Lung oxidant/antioxidant imbalance 
also leads to NF-κB activation [62]. SPM induces nuclear 
translocation of NF-κB and production of inflammatory cytokines 
in human bronchial epithelial cells [61, 64]. 

TLRs play a significant role in the activation of inflammatory 
pathways mediated by exposure to SPM [32, 61, 65]. A dose-
dependent increase in TLR2, TLR4, and MyD88 levels occurs under 
the impact of microtoxicants, leading to the development of 
systemic inflammation [32, 66-71]. TLR4 also activates the TIR base 
containing adaptor-inducing interferon-β (TRIF) located on the 
endosome [70]. There is evidence that upon exposure to SPM, 
activation of TLR4 triggers a signal transduction cascade and 
activates NF-κB phosphorylation, which leads to increased 
expression of proinflammatory cytokines, such as TNF-α, IL-6 and 
IL-1β [72]. Thus, TLR2 and TLR4 play a key role in the development 
of the inflammatory process when exposed to SPM. Once a TLR 
binds to a ligand, molecular adapters, including MyD88, trigger a 
cascade of signaling reactions [32, 61, 73]. 

SPM influences the release of proinflammatory cytokines, 
which is regulated by aryl hydrocarbon receptor (AHR) signaling [9, 
74, 75]. In addition to the activation of transcription enzymes, 
AHRs are associated with the differentiation of Th17 lymphocytes 
[76, 77]. AHR is expressed in various T-cells: maximally in Th17 
cells and minimally in naïve Th0 cells [77]. AHR is critical for the 
balance of TReg7 and Th17 cells. The degree and duration of AHR 
activation changes the balance between these effector and 
regulatory responses. Th17 cells produce IL-17 responsible for the 
development of inflammation when exposed to AHR [77-79]. 

Important participants in the cytokine regulation under the 
influence of SPM are IL-4 and IL-6. It has been shown that both 
short-term and long-term exposures to SPM lead to a dose-
dependent increase in IL-6 production [14, 53, 80-82]. Under the 
influence of SPM, the increase in IL-6 expression is regulated by 
the TLR2 and TLR4/NADPH oxidase/ROS/NF-κB signaling pathways. 
We emphasize that activation of the NF-κB pathway is the key 
process initiating the cascade of reactions [54, 67, 68]. There is 
evidence that in patients with COPD, SPM of micro-sized fractions 
contributes to the modulation of the IL-6 signaling pathway in the 
direction of conventional signal transduction to T helper blood 
cells to regulate the inflammatory process and compensate for 
apoptotic changes [53]. Exposure to air microtoxicants also leads 
to a significant increase in IL-4 levels [83]. An experimental study 
on mice showed an increase in IL-4 production in response to 
exposure to SPM in bronchial asthma [84]. Another study showed 
that as COPD worsened under conditions of high anthropogenic 
load, circulating T helper cells experienced a decrease in the 
expression of IL-4R and an increase in the synthesis of IL-6R, 
thereby indicating inhibition of the anti-inflammatory activity of IL-
4 and activation of the anti-inflammatory and anti-apoptotic 
effects of IL-6 on these cells [53]. 

 

Effect of qualitative SPM composition on the immune 
response  

The formation of the response is influenced by various 
components of SPM, including adsorbed metals, and organic 
substances such as PAHs (benzo[α]pyrene, benzo[β]fluoranthene, 
pyrene), PAH-like compounds, quinolines, etc., which may cause 
oxidative stress. 

Binding of PAH ligand triggers nuclear translocation and 
induction of xenobiotic metabolic enzymes, such as cytochrome 
P450 genes (CYP1A1, CYP1B1, CYP5), which in turn produce more 
cytotoxic and genotoxic products [65]. When exposed to PAHs, 
inflammasome activation occurs through the aryl hydrocarbon 
receptor pathway. Cells have a specific mechanism (AHR) for the 
perception of PAHs that is a cytosolic receptor sensitive to 
environmental factors [9, 77, 85]. 

Metals adsorbed on SPM, when interacting with enzymes 
expressed by neutrophils (NADPH oxidase, myeloperoxidase), are 
capable of catalyzing a further redox cycle and causing oxidative 
damage [9]. There is evidence that heavy metal-rich SPM can 
stimulate Th2 and Th17 inflammation, which is accompanied by 
airway hyperresponsiveness and the release of cytokines (IL-5, IL-
13, IFN-γ and IL-17A) [86]. 

SPM may contain lipopolysaccharides (LPS) and fungal spores, 
which are natural ligands of TLRs, as well as oxidized phospholipids 
and nucleic acids that act as alternative TLR agonists [9, 19]. LPS 
stimulate cells through TLR4; however, LPS can also stimulate 
airway epithelial cells through TLR2 [9, 65, 87]. Moreover, the ratio 
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of these two pathways varies depending on different cell types 
and size ranges, as well as on the qualitative composition of SPM 
[9, 65]. Hence, studying the composition of SPM in different 
regions is a key issue in examining the impact of airborne SPM on 
human health.  

 

Conclusion 

Hence, immunological responses associated with exposure to 
SPM are considered to be the result of a synergistic effect of 
systemic and local inflammation. Under the influence of SPM, a 
complex of cellular and molecular processes is triggered, causing 
the launch of specific signaling pathways that determine the 
outcome of the formation of environmentally dependent 
pathology. Despite the available evidence, some response 
mechanisms remain poorly understood. The immune response 
may depend on the qualitative, quantitative and dimensional 
nature of the microtoxicants, the physiological state of the body 
and the duration of exposure. Therefore, studying the parameters 
of the SPM of specific zones, their impact on the human body, and 
identifying subtle cellular mechanisms can help in the 
development of new strategies for the prevention of 
environmentally dependent pathologies. 
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